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Introduction _

A sequence of two alternatives 4 and B is obtamed by arranging the observa-
tions of two samples 4 and B in ascending order. Let the sample 4 consist of m
observations and the sample B of n observations. A number of statistics arising
from such sequences has been considered by varlous authors [Mann and Whitney
(1947), Kruskal (1952), Mood (1954), Stuart (1952), Iyer and Singh (1955)]. A few
of these statistics relevant to this paper are

(i) the number of runs of 4’s and B’s,

(ii) the number of AB or BA transitions teiween adjoining or ‘successive
observations, ’ ’

(iii) the number of A’s plecedmg B’s in the sequence,
(iv) the,sum of the ranks of 4’s or B’ 5

(v) the number of AB or BA transmons between pairs separated by (r 2)
observatlons or less in the sequence

4\ he statistic ment1oned in (m) is called- Mann and Whitney’s U statistic and
the -statistic . given- by (iv) is:commonly known as Wilcoxon’s statistic. - There is-a
close relation between the latter two statistics. Taking S, to be the sum of the
ranks of the observations of Biand U as” the number of AB transitions in the

_sequence,-it can be easily seen that - -~ - =~ - -

S =U4 Mot n(n+l)

_ The statistic mentloned in (v) has been called as T and for r—-m-l n, it reduces to
U statistic. "

A series-of investigations carried out by Iyer and Singh (1955), Singh (1966)
~and Iyer and Ray (1964) show (i) that the distribution of 7, tends to the normal
- form for values of m+n(=S, say) greater than thirty, (i7) that the power of the
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statistic for testing randomness of a binomial sequence is maximum at some point
for r< /2 when the alternative is a Markov chain such that the, measure of depen-
dence d=p,—p,, between successive observations is positive, p; and p,, being the
conditional probabilities P (4/4) and P(A/B) of the sequence and.(iii) that the
power of the statistic for testing two samples is maximum at some point for r < s/2
and hence more than that for the U statistic in certain cases when the form' of the
distribution of the parent population -is not known. - It may incidentally be
mentioned that Wetherill (1960) has established that the Wilcoxon’s test is a little
more robust than the t-test for testing differences in population variances ahd
is much more sensitive to skewness and kurtosis. For testing location of two
samples which; belong to identical non-normal populations, Wilcoxon’s test is to
be preferred although #-test is insensitive to small departures from normality.

As regards T, the fact that T, is more powerful than U under certain circum-
stances makes it desirable to know as to how this test would behave when the
two samples belong to the same normal. population. We shall therefore
examine the power of T as compared to U for two samples belonging to a normal

population.
2. . Preliminaries and Notations
: ~ £ 2 s . . , .

Let xq, Xoy oo 0ee Xm and g, Voo oo . be two random samples of sizes m and n
from two populations with distribution functions F and G and density functions
£ and g respectively. Pool together the two samples and arrange them in ascending
or descending order of magnitude. The ordered arrangement of the two samples
gives a binominal sequence of m x's and ny’s. The T-statistics for this sequence

may be defined as follows :

s—1 ' ’
T,= = 2z Where z;, ;=1 if the ith and (i+1)th observations of
i=1
' the sequence are x and y respectively ;
z;, i +1=0 otherwise. P 1))

s—2
To=Ta+ 3 Zi, iro Where z;, +2==1 if the ith and (i+2)-th observa-
i=1 :

tions are x and y respectively
z;, ++2=0 otherwise ...(2)

L s—k+1 S
Ty=Tyt. = . z;, i +k—1 where z;, i+k—1 =1if ithand ((+k—1)th
. Pal

observations are x and y respectively
- and zero otherwise -3)
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" It may be noted that T, reduces to the U-statistic and T, gives the number
"of AB transitions between successive observations.

3. Expected values and Variances of T on the Basis of Ordered Statistics

e

Consider two samples of  size m andn. Let z;, Zseeere... z, Wwhere
s=m-+n, represent the ordered values of these two samples. Also let f(z) and
g(z) denote the density functions of the two samples. The probability of obtaining
an AB transition between successwe observations z; and z;4,, i.e. z; belonging to 4 -~
and Z;+1 to B is given by

p =[ m f(z). ][ ng(zir)
Tl mfE) gz (m—1) f (Zi41) +1g(zs1)

Similarly the probability for an AB transmon between the /th and (i-+k)th
observation is

=} m f(z)) -~ ng(zun)
Pm—[ m f(z:) +ng(z,) :] [ (m—"N)zi11) + ng(z14) | (9

It can be easily seen that

-1 s—1
E(T)=E “921'(2,-,1'1—]):: 21 E(z;, i+1)=(s—1)p, «(5) .
i= i=

where gy, is the average of py, for different values of i

V(T,)=E(T,) + 2(the sum of the expéctations for two AB transitions between
i-th and (/4-1)th observations and jth and (j+1)th observations in the

sequence) - [E(T,)]? ~...(6)
The expected value of Ty and its variance are given by
E(Ty)=(s—1)p,+(s—2)p; | (T

V(T5)=E(Ty)+2(the sum of the expectations for rwo AB transitions like ABB or
AAB from three consecutive observations) +2 (the sum of the expectations for
two AB transitions from four obscrvations such that each of the transitions 4B

is not separated by more than one observation) —{E(T;)}? ...(8)
. k
E(I) = E (s—p+1) pry ..(9)

V(T)=E(T)+2 (the sum of the expectations for two AB transitions arising
from three observations like 4...... B...... Band A......4...... B where
the number of observations between any two observatlons of the
configuration is k or lessthan k)

=+2 (the sum of the expectations two transisions like A...Band 4...B
from four observations such that each of the A....B transitions is
separated by 1, 2, . ... (k — 1) observations).

—[E(Ty)]? ...(10)
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To evaluate E(T}) and V(T}) we use the following results

N mf (z:)  ng(zan)
0 b= | res 105 ] [on—l) 7 Coers) + 78 GorD) A

m—=1 fi'Czux) 1 fi(z)])
~ gyl e lE e 4 Tert] o

where f (z) and g(z) stand for f(z, 0), g(z, 0), 6 being a vector involving u parameters
8,, 0,,...0;. It has been assumed that g(z, 0)=f(z, 04+ A6). Also fi'(z;) stands for
the differential coefficient of f(z, 6) with respect to ;.

The probability pics for ani A A B transition between the observations zi, Zite
and zy4q is given by ‘ '

m®n_f(z) f(zit-c) g(zi+d)

) eioa= [ T g GTan —1) J Gure) + ng Gl —2) f Gera) T8 Gana)]
o (12)

gm -2 ft (Z,.M) I ft;(zi+c)
s—2 f(zira) s5—1 f(2Zere)

_n fi) gil
T e . (13)
) The probability for an ABB transition from z;, z;+. and z;4.4 reduces to

o m=1 fi'Gus) , m=1 f/(Zua)
Pica &= &) [1+ Z A z s—1 f(Z,'+c) s—2 f(zi+d)

— o % }] _5...(14) ‘

(iv) The probability for an AB AB transition form z, Zitc, Zia and zye. is
obtained from
m®p® m—2 ft (ZH-c) m—1  fi'(zu)
Pieas™ TS [ + Z Ab { s—3 f(zt+c) s—1 f(zito)
_. n—l fiwe) _ n fi@z) }]
s—=2 fQ+a s flz)

The above four results can be easily established by using Taylor’s expansion
omitting second and higher order terms in A§.

" M=

m?n
s(s 1)(s 2) [1

..(15)

when fand g refer to the normal dlstnbutlons with mean p and p+38 and
variance g%, since :

f@ _ (z u)
f 2(Z) S

mn m—1 m—1 n X
Pk [1 + ——{ e )Jr S AT g E }] -(16)

, the above four results reduce to
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m®n n ST
Plea™ ) [1+ { < tiTT )+ - 2 Zitd 7
7 n )
| - sil zz+c~ Tzi }] - (17)
. mn® -8, ‘n m—1
?4ca—u—s(3) [1+ P { B (—‘S — )'I- So1 Zte

—1 e
+— ?i+df‘j?‘ Zi%] R (18)

‘E’n"’ 8 n o n— m=1_m=2\
Piede S @ =) ”(T—*— RS —,5—3 .

-1

m-—=2 -1 n—1 n
| +s—3 Zite + S1 Gt TGy GnT }]
Using these values we can obtam the values of

E(T. 2), V(Ty), E(T3) V(T,), etc.

E(Tz)—— (2)[ (s D+ _g (s—l) (—_._m_;> J

_ s—1 -1 .
{‘. m_ll E Zit1— '% E Z; }] --(19)

= ' . i=1
. m’n® 5 mn m_m—=1\ - m-1 sl n sl
V(Tz) ) 2(S )+ S(S— 1) g( s—1 )y,-{- s-1 ,?122“_—6‘_,_212{}
2;_71n 2m®p? _ (n 1) m—-2 m-1
il— p §+ s b (s—2) (s—3)X... -{——— S
- - 2n '
Ty (G PR O PR UNER .(20)
. mm ’ m—1 2k n Szk A
E(Tr) fond (z) (S k)+ 1— E Ziyp—— pN Z3
;o i=1 S =1
v 1
~G—HBp (- }] QD)
If, however, p=0 and o,2=1, (21)' reduces to -
: r—1 m—l Sk s=k S :
E(Tk) 23 [e+s {115 a2 a1l L@

The expression for V(73) is very cumbersome and therefore has not been
cevaluated: However, for finite values of k, it can be evaluated thh the aid of the
‘ cxpresswn,s given in (11), (12), (13). and (14). .

H
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ET- -(—%(@’:{}, L - (23)
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L .+ . When F=G,i.e.,-when: 8==0 the expected-values of T}, - and V(Tk) reduce to
| o o 7

' V=g =1 61 =1 (r =9] g+ 7

EG U g(4;—5) (65-50)% ’f“:’[},“f [("1) (Zs i) ’”"] . (24)

: st

5

It | r=(s- K) >A~— then
'E(Ts-k)—(s—’rf—l%.(s—*@ = . e
v, _K)_— [3¢s—K—1) <s+1<)+z<s K-T)® (s+260] %
; SO L 1)(s+f<) =3 (s=K—1) s 126)
i +(2) K(k—l)] ’":(l’,’m [(s = 1) (”.K) ml e
|

4. Comparative Efficiency of T, for Testing two Normal Samples

‘The relative efficiency of the. statistics T, for binomial and Markovian
sequences has been studied' by “Iyer: and Singh (1955) and Iyer and Ray-(1966).
These studies show that for bmomlal _squences the power of T, is maximum for

r< % For comparing two samples also the power is maximum for r < < ,—‘;-,
provided no information is available regarding the form "of the parent population.
We shall now examine the behaviour of these statistics with normal samples for

translation alternatives. For this purpose. we shall first establish the criteria to be
used for finding the relative power of T,.

Assuming T, and T,* to be two estimates of. u(6) and p*(p) which are
 functions of the parameter ¢ with variances ,%(T;) and o,*2 (T,) it can be seen that
E(Ty,) =p.(0) and E(T *) p.,.* (0) and the Varlance of 0 as estlmated from (1,(6) and

lln*(f).) can be approx1mated to i - (0) ;2 and %d (0) } respectlvely. Thergfore

do dg
the efficiency of T, .and T,* can‘be taken to” be’ iriversely proportional to the
variances of 6 obtained from these' statistics. * This' argument leads immediately
to the result of Mood (1954) and Pitman (1948) for relative efficiency (RE) of
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two statistics. It may, however, be noted that Mood obtains this expression by
considering the change in the power of the statistics for the alternative on the
assumption there is no change in the variance of the statistic under the null and
non-null hypothesis. But this assumption is not justified. The variance of T,
under H, and H, differ to some extent. Consequently in examining the R.E. of T,
for varying values of r it is necessary to consider the change in the power of these
statistics by making allowance for the deviation in the variances under H, and H,.
Taking the significance level of the test to be «, we note that

k
— 2
a=1— j $(1) dt where $(H)=—— exp ( f ) e
P vV 2r 2
‘Let P (6) be the power function of any statistic T. Then
PO)=P{ | T—(6) | >koy(6)}
‘ o (8) +kop (6)

mj‘ ks exp[ {y HI(G)}de

kg(k) (_dpo(0) 2
o+ 2(9){ d0 } (9 00)

k¢(k)

i

= — +.(28)

where 72 is the square’of the change in T under the alternate hypothesis. The
above expression is based on the assumption that the variance of T under H, and
H, is the same. If allowance is made for the change in variance, then

P(0)y>~a+KH(K) [ C+£’—Z] ...(29)
where "']:E(Tkx)—E(Tko) and 0’12= 0'0?(1 +C)

- show that relative

. change in power under NB,.

Using the criteria %6, and ({4+%?%q,%), the R.E. of the statistics T, for
different values of r for normal translation alternatives was evaluated for two samples
of size fifteen each from the normal population N (0,1) and N (01, 1) as detailed
below. The average deviates of the erder statistics for a sample of thirty observations
from the standard normal population were noted from Fisher and Yates Table, The

values of E (T,) and ¥ (T,) for r=2 to 30 were calculated with the help of (19) and
" (24) and (26). The values of %?/o,? for the different T," were also evaluated. Further
values of ({4 %?%/5,%) were calculated using (11), (12), (13), (14) and (15) given earlier.
The values of %*/a;® and ({47?/o,?) have been shown in Fig. 1. This figure shows
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that if we assume the variances of 7', under-the two hypotheses to be the same, the
maximum power is attained for T3. This corresponds to Mann and Whitney’s U
statistic. However, the power reaches almost near the maximum value for T;;. The
power of T}, is minimum. As T is closely related to the number of runs of A’s or
B’s in the sequence, we may conclude‘that the usual run test is not of much use for
testing two samples. When we consider the increase in the variance for the
alternative, the power is maximum for Ty and is definitely more than that of Tap-
Therefore -our previous finding that T, is more efficient for r <s/2 holds good f01
transla‘uon alternatlves of samples from normal population also, '

-5. -Monté.Carlo Studies

The studies described above were supplemented by Monte Carlo Studies.
For this purpose 1035 sets of random samples, each set consisting of two samples
~each of 15 observations were drawn from a normal population with zero mean and
-unit standard deviation N(0, 1). The two samples in each set were pooled and
arranged in ascending order and the values of T, were computed. For the alternative,
one of the samples was taken from N(0'1, 1) and the other from: N(0, 1) and the
values of T, were again separately determined with the help of IBM .1620.. The
expected values and the variances of 7, for null and non-null hypothesis were
computed. Comparing the values of the variances it was seen that the variance for
the non-null case was in general a little less than that for the null hypothesis.

The power was -evaluated by both the procedures considered earlier. The
power component obtained is shown in Fig. 2. In the present investigations we
note that the variance for 4B transitions under the nori-null hypothesis is in general
less than that for the null hypothesis while the expected value is more. With
some analysis it can be seen that the variance for the sum of AB and BA transitions
is four times that for 4B transitions under the null hypothesis. The covariance
between AB and BA transitions will be approximately equal to the variance under the
null hypothesis.  Since the variance for non-null hypothesis of 4B-transition is less
than that for the null hypothesis, the variance for B4 Transmon under non-null
conditions will be more than that for null case and will approxxmately satisfy the -
condition that variance of 4B plus the variance for BA transitions will be equal to
twice the variance for AB or BA transitions under the null hypothesis. It, therefore,
follows that for BA transitions the increase in variance is almost the same as the
decrease observed for AB transitions. Following this, the power given in Flg. 2 is
that for BA joins. SRR :

It would be seen from Fig 2 that the power observed from 7}fo,2 for k=15
is only slightly less than the maximum attained:for k=30. If the change in the
variance for non-null hypothesis is considered then the power is maximum for B4

“transitions for k=9. The other statistics Tg, T1q, Ty, and Ty are good competitors.
The U statistic does not seem to be the optimum statistic ynder these conditions,
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6. Summary

A bmomlal sequence is obtamed by ordermg a pair of samples A and B of .
sizes m and n.. A number of statistics arising from this sequence has been considered
by various authors for testing, the location parameters. Among them, the test based
on the sum of the ranks of one of the samples. has been found to be nearly as
powerful as the ‘#’~test for testing two normal samples. This test is also equivalent
to the U-statistic of Mann and Whitney. The U-statistic gives the number of AB or
BA transitions occurring between any two observations of the sequence. Instead of
taking all the transitions, one may consider transitions between observations
separated by (r—2) or less in the sequence. It has been found that their statistics is
(m+n)-

2
of T, under the null and non-null hypothesis are the same. This assumption is not
in general Justrﬁable because the varlance under the two hypothesis are not the same.
(m+ n)

2
ing even two normal samples The superlorlty of the test for samples from
populations about which no- information is available regarding the form of the
distribution has already been estabhshed earlier.  Thus on the whole T,, for

nearly as efficient as the U-for r< , when-it is assumed that the variance

for test

When this isso, T, appears to be far more powerful than U for r<

-; Z (————m +n) appears to be a more éfficient statrst1c for testing two samples than

most of the other tests recommended.’ The comparative efficiency of this test as
- 'compared to Dixon’s c*test (1940) is not known, This would need further

1nvest1gat10ns
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